
From Vibes to Validation: A Hands-On Approach to
Product Discovery

Welcome to Our Hands-On Workshop!
Goal: By the end of this session, you'll be able to start from scratch and create a working
software prototype that serves as a mechanism for user and customer feedback—turning your
intuition into actionable insights.

Workshop Overview:
This 80-minute workshop will walk participants through a real-time, hands-on product discovery
flow using vibe coding: a fast, intuitive way to turn an inkling of an idea into something testable
and valuable. We'll move quickly from vague concepts to working prototypes—exploring how to
generate requirements, build iteratively, test with users, and shape what works into real product
momentum.

Workshop Outline:

Welcome & Framing (5 min)
●​ Introduction
●​ Why we're here: Vibe Coding for faster, truer product discovery
●​ Quick poll (PM/Designer/Engineer) (Tool Familiarity)
●​ Brief story: turning a hunch into a build
●​ What we'll do in the next 75 minutes

○​ Get started together, up to the point of “Hello World”
○​ From there, choose your own adventure:

■​ Continue along with me, building the Custom Kanban prototype OR
■​ Use each step of the workshop to build your own prototype. (Note: the

steps in this workshop are meant for building a UI-heavy web application
with a single integration to an LLM for one text generation feature.)

Choosing the Right Tools (5 min)
●​ Design Prototype: Lovable.dev, v0.dev, Bolt.new == build + deploy for fast frontend

feedback

●​ Working Prototype: Cursor, VSCode, or Replit == pair programming with AI for
prototyping more than just frontend (data analysis, AI integration, invoking other
services)

●​ When to choose which (speed, team, fidelity, deployability)
●​ For this workshop we’ll build more than just a UI. We’ll incorporate an AI feature into our

prototype, so that puts us into the second category of tools.
●​ Here we’ll use VSCode w/Copilot + GitHub Codespaces because this eliminates most

issues with your local laptop and offers generous free usage.

Setup Your Tools and Accounts (10 min)
At the end of this step, you’ll have all the tools and accounts you need to begin vibe coding.

●​ Sign up for a GitHub account if you don’t already have one
○​ Ensure you’ve got Copilot enabled and fully configured in your GitHub account
○​ If you want to have access to the best AI models for coding, upgrade to Copilot

Pro (free 30-day trial). If not, for this workshop, you can make due with Copilot
Free though you might hit more dead ends.

●​ Install VSCode
○​ Connect VSCode and GitHub Copilot (see the Copilot FAQ if you have any

issues).
○​ Install the GitHub Codespaces extension into VSCode.​

○​ Install the SpecStory extension into VSCode if you want to share what you

learned at the end of the workshop.
●​ Create a GitHub repository and enable a Codespace.

○​ Note: You should be able to create a Codespace in your personal GitHub
account without a problem. Be sure to choose your name (e.g. jakelevirne)
and not an organization name when creating the repository below.

Visit https://github.com and click on the + and then New repository

https://github.com/signup
https://github.com/settings/copilot
https://github.com/github-copilot/signup?ref_cta=Copilot+trial&ref_loc=about+github+copilot&ref_page=docs
https://github.com/github-copilot/signup?ref_cta=Copilot+trial&ref_loc=about+github+copilot&ref_page=docs
https://code.visualstudio.com/docs/copilot/faq
https://marketplace.visualstudio.com/items?itemName=GitHub.codespaces
https://marketplace.visualstudio.com/items?itemName=SpecStory.specstory-vscode
https://github.com

Give your repository a name (like vibe-workshop)

Leave the repo Public if you want to share with others, check the box to Add a README file
and choose to Add .gitignore with a template of Node.

Your project repository gets created. On the resulting page, click the <> Code button and then
click the Codespaces tab and click Create codespace on main

It’ll take a couple of minutes, and when it finishes, you’ll see this in your browser:

You can now close this tab because we’re going to connect to this Codespace from VSCode on
our desktop and we don’t want two connections to a single Codespace at the same time.

In VSCode, go to the View menu and select Command Palette… . Then type “codespaces”
and select Codespaces: Connect to Codespace. Choose “Allow” when prompted to let
the extension sign in using GitHub.

Choose the codespace you just created for your vibe-workshop project repository.

Don’t worry if you can’t get your tools and accounts set up for this session. You can follow along
with the demo, and then refer to the video afterwards to try again on your own.

Hello World (10 min)
At the end of this step, you’ll have successfully run and made a change to your web application.

In VSCode, click the button in the far upper right to Toggle Secondary Side Bar and make sure
that “Ask Copilot” is showing.

Then in the bottom right, click on the Copilot icon and make sure Copilot is enabled (Code
Completions all files).

Then in the bottom right, click on “Ask” and switch into “Agent” mode and make sure your model
is set to “Claude 3.7 Sonnet”.

Generally speaking, this is the mode we want to stay in. If you ever notice the AI isn’t behaving
the way you expect, make sure you’re in Agent mode on Claude 3.7 Sonnet. And in general,
when the agent prompts for permissions to take action, you should allow it. Remember we’re
working on a remote Codespace so these actions won’t affect your laptop.

Get a Basic Web App Working
We’ll create a NextJS application using a set of UI components called ShadCN. AI is good at
coding these types of applications because there are a lot of examples. But to initialize a new
one, it’s much easier to just run the single create command ourselves than to rely on AI.

Open a terminal in VSCode (Terminal->New Terminal)

Then, type this exact command into the terminal inside VSCode:

npx shadcn@latest init

And select the default (enter) for every question the command asks.

After a few minutes, you’ll see the command complete in your terminal and you’ll see a new
directory named my-app in the left hand file explorer.

Then, run these commands:

cd my-app
npm run dev

And then click “Open in Browser” to see the NextJS starter app.

And now, let’s get the Agent making a basic change for us. In VSCode, at the bottom of the Edit
with Copilot window, make sure you’re in Agent mode and have Gemini 2.5 Pro (or Claude 3.5

Sonnet if you’re in Free mode) selected. If this model is erroring out or extremely slow, try
another model like GPT-4o or GPT-4.1

modify this app so that instead of the default next.js app, you show a
Hello, Sun! page with an svg rendering of the beach and some clouds in
the sky

You’ll get something similar to (but not exactly like) this:

And if you switch back to your browser and reload the page, you’ll see it updated automatically.
It will continue to do so as you make changes, as long as your Next server (npm run dev) is
still running in the VSCode terminal. If it stops, just restart it with the same command.

One Shot a Basic Prototype (10 min)
To give yourself (and the AI) something to react to, it can be helpful to get some sort of UI
prototype working as quickly as possible. Crafting a good initial prompt here is often about
constraining what the AI is trying to do in this first pass so it doesn’t go off the rails.

Ok, what we want now is the basic outline of a kanban board
application with some dummy data that looks to be in the style of the
attached screenshot of Github. It does not need to function. It’s just
a mockup.

(The screenshot isn’t necessary, but it’s always interesting to see what it does with it. Just use
your favorite screenshot tool and then paste or drag the screenshot right into the Agent chat
box.) Here’s the screenshot I used, for reference.

And if all goes well, you’ll see something that looks similar to (but not exactly like) this.

At this point you might feel like, “nailed it.. I’m done!” And if all you need is a visual prototype,
this could be a great stopping point. But if that’s all you need there are easier ways to get here
(v0.dev, lovable.dev).

Requirements & Workplan Generation (10 min)
Ok, at this point you could just keep prompting the Agent to make changes bit by bit. But there’s
a more methodical approach that’s helpful especially as your project grows. And for the Product

people out there, this will feel very familiar… we’re going to write requirements and work plans.
But we’re going to have the Agent help us write them.

In the VSCode File Explorer, choose to create a new file

And name it PLAN.md (it’ll be a markdown file).

Make sure it ends up at the top level of your project. If not, drag it to the right place. There
doesn’t need to be any text in it; we’ll use the Agent to write and edit it for us. Use a prompt like
this:

Great. Let's pause for a second and make a plan. edit PLAN.md to
capture the plan for all the features we want to build in our kanban

board It should let me add, edit, and delete cards. It should let me
move cards between columns. it should let me create, edit, and delete
columns. It should let me add labels to cards. For now just make a
plan don't implement it. Break this into a phased workplan.

You should get a phased plan written for you, like this.

Review the plan at a high level, make sure it makes sense. Change ordering and make edits
either directly in the doc or via the Agent.

Iteratively Implement and Refine the Plan (10 min)
It gets easy and fun at this point. Just tell the Agent

begin implementing phase 1, checking off items in the PLAN as you
complete them

Keep checking in on your running web app to see the progress.

Ask AI to refine your PLAN.md as you come up with new ideas.

Third-Party APIs & AI Integration (10 min)
With this step, we’ll learn two things: how to set up an API integration to an existing service (in
this case, Gemini) and how to integrate AI text generation into our app.

This requires the use of environment variables in our NextJS project. If you’re not familiar with
this concept, some AI chats and Googling can go a long way. Here’s the reference guide on
using environment variables in NextJS apps.

First, use a Google login and access https://aistudio.google.com and click “Get API key” and
then “Create API key” and finally “Create API key in new project”

https://nextjs.org/docs/pages/guides/environment-variables
https://nextjs.org/docs/pages/guides/environment-variables
https://aistudio.google.com

Copy the resulting API key and get ready to paste it into a new file in your project. Right click on
the my-app folder in your project, create a new file and name it .env.local (including the dot
at the beginning of the filename).

In this new file, type GEMINI_API_KEY= and then paste your copied key, like below and then
save the file.

Try this prompt to get it to plan our AI integration.

Before moving on, insert a new phase in PLAN.md that we'll work on
now. We want to add an AI button next to the New Card Title. When the
user types in a title and clicks the AI button, the app makes a call
to gemini-2.5-flash-preview-04-17 with the card title, asking for a
one sentence description back. I’ve already got my Gemini API key
defined in .env.local as GEMINI_API_KEY. Make the plan before we start
implementing.

We’ll end up with something like this.

Now prompt the Agent:

Implement this phase of the plan

At this point, it created a NextJS back end API route for me. I couldn’t easily test this without a
UI, so I prompted

continue the implementation

Sidebar: Troubleshooting

Ironically, I almost always end up with some kind of error when I use Gemini to generate the
code for calling the Gemini AI API 🤷🏻‍♂️. This is good practice for troubleshooting. See the
troubleshooting tips in the Reference section of this document for help.

https://nextjs.org/docs/pages/building-your-application/routing/api-routes

As I told it to continue implementing, I ran into this error while testing the button:

This one is tricky. Through a bunch of AI questions, and thanks to some past experience, I
realized that the npm install @google/generative-ai command had been run in the
wrong directory. I needed to change into the my-app directory first before running it. Like this:

cd my-app
npm install @google/generative-ai

(All this in the existing terminal by hitting Ctrl-C to stop npm run dev, then running the
commands above, and then starting the dev server up again. Sometimes this is needed,
especially when installing new NPM packages.)

We got past that error, but then hit this new problem in the UI.

And when we go to the Terminal in VSCode we see this.

In another twist of irony, the Gemini coding agent doesn’t know the name of the latest Gemini
model. So in this case, I had to look at this code, correctly type the model name
(gemini-1.5-flash-preview-04-17).

At this point, I no longer got an error. But clicking the AI button produced no result. I prompted
the Agent:

Pressing the AI button does something, but it doesn't update the
description. add lots of logging. Output as much information as you
can both on the client and server side.

When it made that logging update, it changed my model name again. Sometimes the Agent is
aggressively wrong! So I changed it back by hand, with this comment in hopes it would help:

And (waiting with baited breath), I got … nothing. I had typed a card title and hit the AI button,
but got no description. Returning to the logs, I saw this:

“No description field in API response data.” And looking at the server logs I saw this.

This one’s trickier to spot, because there’s no explicit error. But the culprit is
”finishReason”: “MAX_TOKENS”. Something is causing us to run out of tokens. Switching
to the code for this API route (route.ts), and doing a Ctrl/Cmd-F find for “max” revealed this.

It looks like the Agent wrote code that sets a very low limit for maximum output tokens from
Gemini. So I just deleted the line maxOutputTokens: 30, and gave it another try.

Success! 💥

(And now’s not a bad time to use Git to checkpoint your work. See below in the Reference
section for details.)

Sidebar: Outdated Packages

Even the best Agent models are out of date in their knowledge. If you search on
https://www.npmjs.com/ for the @google/generative-ai package we’re using you’ll notice
that it’s deprecated and will no longer be supported after August 31, 2025. After a bunch of
poking around and searching I found the newer package– @google/genai. But since the
Agent doesn’t know about it, it’ll take a lot of strong-arming to get the Agent to use it. You can do
things like copy/paste the quick start example from the documentation into your prompt. But
even this can be flaky. You can roll up your sleeves and edit the code in route.ts by hand–
the example is simple enough. Welcome to the jagged edge of AI code generation. 😀

From Prototype to Production: Best Practices and Wrap (5 min)
●​ When to throw it out and rebuild
●​ When to evolve into a real product
●​ Pairing with engineers or hiring to scale
●​ Documenting intent to guide future dev
●​ It’s good for rapid shape up

○​ Vibes → Prototype → Signal → Bets
○​ Shape smaller, ship smarter

https://www.npmjs.com/
https://ai.google.dev/gemini-api/docs/quickstart?lang=node

Reference

Links

●​ https://ui.shadcn.com/docs/components/accordion
●​ https://www.npmjs.com/
●​ https://lovable.dev
●​ https://cursor.com
●​ https://v0.dev
●​ https://specstory.com
●​ https://nextjs.org/docs/pages/guides/environment-variables

Using Git to checkpoint work
While VSCode offers the ability to Undo an Agent, it’s more reliable to “checkpoint” your work
using Git, which is built right into VSCode.

Click the Source Control icon on the left side (3rd from the top) and type a message, which is
just a description of this checkpoint.

While you can individually choose which files to checkpoint, it’s easier to let VSCode stage all
your changes for you. Answer “Yes” to this prompt

https://ui.shadcn.com/docs/components/accordion
https://www.npmjs.com/
https://lovable.dev
https://cursor.com
https://v0.dev
https://specstory.com
https://nextjs.org/docs/pages/guides/environment-variables

And then, hit Sync Changes (which pushes this checkpoint to GitHub so it’s saved in the cloud
for you).

Now, whatever changes the Agent makes from this point forward can easily be discarded. For
example, here are some more changes and the button that’ll let you discard them.

There are even advanced ways to use Git from the command line to roll back further or select
specific files to roll back. Ask an AI questions about git to get details of how to do these
advanced operations.

Tips for Troubleshooting

Here are some general tips for troubleshooting. Try these methodically, not all at once.
●​ Copy the full error message you’re receiving (take a screenshot if you can’t copy the

text) and paste the error into the Agent prompt. Then use a prompt like I’m getting
this error. Please explain it to me and help me troubleshoot.

●​ Be the Agent’s eyes and hands. Describe to the Agent exactly what you’re doing, what’s
happening, and what you instead expect to be happening.

●​ Start a new chat to wipe the Agent’s memory. Then feed it with initial context– you can
manually drop your PLAN.md into the prompt, drag specific code files into the prompt, or
ask the Agent to explain the details of the feature you’re working on (or a feature near
the one you’re working on).

●​ Switch models. Different models have different approaches in different situations.
●​ Use git to checkpoint work (see the Reference section of this doc). When you roll back

with git, it often makes sense to start a new chat as well.
●​ Ask the agent to add logging to the area of the app where you’re having problems. Then

see the Reference section of this doc for tips on how to read and use the logs. A prompt
like this usually works: add lots of logging to <x>. Output as much
information as you can both on the client and server side.

Managing Terminals in VSCode

One of the nice things about VSCode is that it has a built-in command line terminal for you. For
this workshop, your VSCode terminal points to the Codespace running in the cloud, not your
local laptop. This is exactly what you want but it also means you won’t find your local files from
it. In general, if you ever need help running a command or figuring out what command to run
you can just ask Copilot.

One thing about VSCode that’s not obvious– you can have multiple Terminals open at once.

If you want to do this intentionally, hit the plus button in the Terminal. But sometimes this
happens because the Agent can open a new terminal for you. If you want to see your running
server (e.g. to view logs), you need to switch to the right Terminal (e.g. “npm my-app”). For any

terminal that’s not actively running something, you can safely delete it if you want to keep things
organized.

To stop a running command in a terminal, click the terminal to make sure it has focus and then
hit Ctrl-C. For example, to stop and restart the server, hit Ctrl-C (which shows as ^C in the
terminal).

And then re-run npm run dev.

Adding Logging / Viewing Logs

When you hit bugs and errors, if a quick copy/paste of the error message into the Agent doesn’t
fix things, then logging can help a lot. Logs just give you a way to see more details about exactly
what’s happening in your app which you can then share with the Agent to help it troubleshoot.

The first step in getting useful logs is to prompt the Agent to add logging to the part of your app
where you’re experiencing problems. A prompt like this usually works:

add lots of logging to <x>. Output as much information as you can both
on the client and server side.

In this prompt, <x> is where you describe the part of your app where you want more logging.
(E.g. add lots of logging to the AI description generator).

After the Agent adds logs, you need to take explicit steps to see them. NextJS apps have code
that runs both on the client (in the browser) and on the server (in your terminal). To see server
logs, go to VSCode and look at your Terminal. You may need to scroll up or do a find
(Cmd/Ctrl-F) in your terminal to see the relevant output. Also, make sure you’re in the right
Terminal (see the section above about Managing Terminals in VSCode).

You can copy and paste text, like this log output, directly from the Terminal into the Agent
prompt.

For client-side logs, you need to look in the browser. When using Chrome, get the application to
the point where you’ve hit trouble or encountered the error you’re working on. Then open
Chrome Dev Tools (View->Developer->Developer Tools or three dots menu More
Tools->Developer Tools) and then click on the Console tab. You’ll see log output there,
with the ability to expand/collapse different elements. Then right-click and Copy Console, or take
a screenshot and paste into the Agent prompt.

Project Directory Structure
When you first run npx shadcn@latest init it reaches a step where it asks you for a
project name. If you select the default, it’ll create a new directory in your project name my-app.
This results in a directory structure that looks like this.

When using the terminal (for example to type npm run dev, you might get an error that looks
like this.

This just means you’re in the wrong directory. By default, a new Terminal starts in the project
folder. But our application is one level down from the project folder in a directory called my-app.
So you first need to change directory (cd) into the my-app folder.

cd my-app
npm run dev

And things should now work.

Ask/Edit/Agent Modes
VSCode Copilot has three modes: Ask, Edit, and Agent.

You can read more about them on the GitHub blog. But the short answer is that Ask mode won’t
make any changes to your files. Edit mode will make changes to your files but will expect you to
take a more active role in reviewing the edits and directing it to specific files. Agent mode will try
to do everything for you, including making tool calls, applying code changes, and
creating/deleting files. Agent mode is most often what we want to use when prototyping.

Agent didn’t make any changes
Sometimes Agent mode says a lot of things but doesn’t actually modify any of your code. The
Gemini models are especially susceptible to this. If it ever happens, just nudge the agent with a
prompt like: apply these changes to the code

I don’t like the color scheme in VSCode

By default, VSCode uses a dark color scheme. If you want to change it, bring up the Palette
(View->Palette or Cmd/Ctrl-Shift-P) and type/select Preferences: Color Scheme

Future

●​ Advanced: Deploy for easier sharing / feedback - Vercel
○​ Vercel makes it easy to deploy a NextJS application. Follow the instructions here

and you’ll have your prototype running in the cloud with a URL you can share
with others.

●​ Advanced: Posthog analytics on your prototype

https://github.blog/ai-and-ml/github-copilot/copilot-ask-edit-and-agent-modes-what-they-do-and-when-to-use-them/
https://vercel.com/docs/getting-started-with-vercel/import

○​ Probably overkill, but you can connect usage analytics to your prototype and see
session replays using PostHog. Follow this guide and have the Agent help you
add analytics into your code.

https://posthog.com/docs/libraries/next-js

	From Vibes to Validation: A Hands-On Approach to Product Discovery
	Welcome to Our Hands-On Workshop!
	Workshop Overview:
	Workshop Outline:
	Welcome & Framing (5 min)
	Choosing the Right Tools (5 min)
	Setup Your Tools and Accounts (10 min)
	
	Hello World (10 min)
	Get a Basic Web App Working

	One Shot a Basic Prototype (10 min)
	Requirements & Workplan Generation (10 min)
	Iteratively Implement and Refine the Plan (10 min)
	Third-Party APIs & AI Integration (10 min)
	Sidebar: Troubleshooting
	Sidebar: Outdated Packages

	From Prototype to Production: Best Practices and Wrap (5 min)

	Reference
	Links
	Using Git to checkpoint work
	Tips for Troubleshooting
	Managing Terminals in VSCode
	Adding Logging / Viewing Logs
	Project Directory Structure
	Ask/Edit/Agent Modes
	Agent didn’t make any changes
	I don’t like the color scheme in VSCode
	Future

