Beyond Code-Centric

Agents Code but the Problem of Clear Specification Remains

Greg Ceccarelli

Co-Founder;, SpecStory

June 15, 2025

Executive Summary

Al coding agents can now generate code on demand, moving the primary software bottleneck from
development speed to specification clarity. Robert C. Martin’s maxim ”specifying requirements so
precisely that a machine can execute them is programming” resonates. Waterfall, Agile, and GitFlow
all assume human interpretation. Each stumbles in today’s multi-voice environment with agents.

Structured workflows (like Specflow) coupled with trunk-based development, unify intent, code, and
tests, forcing teams to make domain knowledge explicit. Al excels at implementation but can’t infer
context or bridge contradictory specs. By orchestrating trunk-based flows, focusing on architecture
and robust tests, and treating “the specification itself” as first class alongside versioned code, teams
can harness AI's speed without sacrificing clarity. Those who master collaborative specification in this
era will own the future.

Table of contents

1 PartI- When Bottlenecks Shift 2
1.1 ThePast TWO YEArS v v v v v v v i et e e et e e e e e e e e e e e e e 2
1.1.1 Why Today’s Paradigms Break with Agents 3

2 Part II - Upgrading our approach for the Agent Era 3
2.1 Waterfall's Rigidity o o e e e e e e e 3
2.2 TheAgileParadox oL e e e 4
2.3 GitFlow Fragments ContextatScale 4
2.4 Trunk Based Development Wins i e 4

3 Part III - How Specflow Operationalises Trunk + Specs 5
3.1 Ad-Hoc = AdVersity o v e e e e e e e e e e e e e e e e e e 5
3.2 CurrentPainPoints L e e e e e e e e e 5
3.3 Thelnsight e e e e e e 6

4 Part IV - Where the Human Edge (and ROI) Now Lives 6
4.1 The Sacred Rule: Never Let Al Specify Your Tests v v 7
4.2 The New Stack: Intent + Code + Tests« . v v v i v i vttt e e 7
4.3 The Craftsperson’s Evolution o i 7

5 Acknowledgments 8

6 Endnotes 8

1 PartI- When Bottlenecks Shift

Software’s bottleneck has moved: it’s no longer about how fast we type but how clearly we think. Call it the
abstraction shift. Al agents can churn out code on demand from high-level prompts!, so progress now hinges
on clarity of thought behind specification of what should be built.

Seventeen years ago in the first chapter of Clean Code?, Robert C. Martin wrote: there will be code. He went
on:

“Indeed some have suggested that we are close to the end of code. That soon all code will be
generated instead of written. That programmers simply won’t be needed because business people
will generate programs from specifications.

Nonsense! We will never be rid of code, because code represents the details of the requirements.
At some level those details cannot be ignored or abstracted; they have to be specified. And spec-
ifying requirements in such detail that a machine can execute them is programming. Such a
specification is code.”

This white paper revisits old problems, discusses what works, surfaces new pain points, and highlights how
software practice must adapt.

For the abstraction shift to succeed it will require a reorganization of how we build software. The future
points to trunk-based flow, with small, tight teams steering spec-driven agents.

In this model, humans focus on understanding user needs, making architectural tradeoffs, and precisely
articulating intent. Implementation becomes the domain of agents. The most valuable people are the clearest
thinkers: software composers® and conductors who will orchestrate agents to build systems once requiring
much larger teams.

1.1 The Past Two Years

Few predicted LLMs would work so well, or that the killer use case would turn into the fastest growing SaaS
company on record. Yet Cursor reportedly at ~$500M* ARR as of May 2025 is exactly that.

The shift goes far beyond individual productivity gains®. Teams using LLMs report faster PR merges, quicker
bug fixes, and bolder refactors-yet the 2024 DORA report shows® that wins are uneven, with~40% of devel-
opers still wrestling with prompt churn, review drag, and trust gaps in Al-generated code.

So Natural language programming has partly arrived, but not in the way skeptics or optimists foresaw’. We
thought natural language would become the programming language itself. Instead, it remains what it always
was: the conversation that guides what gets programmed. What changed isn’t the language of specification
but who translates it into code. Martin’s concept of “specifying requirements so precisely that a machine can
execute them” has new meaning in practice.

The industry’s experience unfolds in two parts. First, individual developers benefit from Al code generation
(Cursor, Windsurf, Copilot, Claude Code, etc.), letting solopreneurs build functional software quickly® and
often postponing costly early technical hires.

Second, scaling that software from “one to ten to one hundred” demands coordinated intent from many
people to ensure viability, usability, profitability, and performance. Software remains a moving target as it
evolves alongside users and markets.

As Diwank Singh reflected in his field notes® on shipping real code with Claude (which matches our own
experience):

“Think of traditional coding like sculpting marble. You start with a blank block and carefully
chisel away, line by line, function by function. Every stroke is deliberate, every decision yours.
It’s satisfying but slow. Vibe-coding is more like conducting an orchestra. You’re not playing every
instrument—you’re directing, shaping, guiding.”

That works well for a single conductor. But when multiple conductors must coordinate the same orchestra,
our old systems completely break down.

1.1.1 Why Today’s Paradigms Break with Agents

Humans fill gaps that agents blast past. We infer context and ask clarifying questions. Agents require explicit
guidance or they invent their own. This distinction sounds small but our entire ecosystem (tools, processes,
methodologies) has always relied on human interpretation.

When a PM says, “Make it more user-friendly,” or “Simplify the onboarding,” a human developer books a call,
asks questions, and iterates. Feed the same line to an Al agent and it invents solutions. No middle ground.

You can’t engineer this away. It’s baked into how agents execute prompts. The impact on teamwork is
profound. In an environment where specifications must capture multiple stakeholders’ perspectives (product
vision, business realities, design constraints, user limitations, technical architecture) any ambiguity turns into
a bug, an assumption, or a blocker.

2 Part II - Upgrading our approach for the Agent Era

Today’s environment is code-centric. Tools like Jira, Linear and GitHub, methodologies like Agile, roles like
PMs and Designers all funnel human-specified ideas into an engineering bottleneck. Engineers then translate
these ideas into software. The shift to intent-centric development undercuts older models designed to manage
human-limited bandwidth.

Clean Code does not dedicate a chapter to “specifications” because it declares where they belong. Traditional
software development often treated specifications as static documents drafted before coding began. Clean
Code instead suggests that code becomes clean because it is self-describing, with tests serving as executable
verification.

This works when those writing the code deeply understand the business and user. But it assumes teams can
hold the full system in mind and relies on human interpretation — something Al can’t yet do'°, and which
often fails when developers lack proper research or context.

At SpecStory, we see it firsthand: a quick prototype by one person may capture functional requirements yet
miss deeper architectural and UX demands. The moment additional voices join, what worked seamlessly for
one person becomes a coordination nightmare. Every assumption that was “obvious” to the original developer
now requires explicit documentation and alignment

We often ask for “one definitive file to copy/paste or @ reference in any chat UI to reset project memory for the
next implementation session.” This indicates the deep fragmentation in our context. The solo flow that works
for an individual and an agent fails under multi-voice input.

2.1 Waterfall’s Rigidity

Waterfall seems perfect: specs, all upfront. In practice, book-length documents choke LLMs. They are lengthy,
imprecise in Al terms, and oriented toward a final product rather than iterative building blocks. They also
assume a single “authority” owns specifications.

Al-first teams quickly collide with questions waterfall can’t handle: “Which model best handles pre-planning?”
“How do we feed the codebase context to the AI?” If you hand a two-hundred-page specification to current
generation Al agents, you will get a chaotic!! implementation (if output is even possible).

Agents lack human context inference and Waterfall’s static approach can’t integrate multiple voices'? effec-
tively.

2.2 The Agile Paradox

Agile’s super-power (lightweight autonomy) turns into its achilles-heel when Al joins the team. By favouring
“working software over documentation,” it keeps crucial design intent in hallway chat, stand-ups and tacit
knowledge. That’s fine for humans who can negotiate nuance on the fly, but agents can’t attend retros or
read between the lines.. As Purtell’® notes:

“Storing critical system information solely in human minds - and doing so more often as time goes
on and Al becomes a bigger part of software - is not a good idea. The I/0O bandwidth is low, the
information degrades quickly, and collaboration scales poorly.”

To harness agents without losing velocity, teams must pair Agile autonomy with rigorously captured, exe-
cutable knowledge making specifications first-class citizens alongside code and conversation.

2.3 GitFlow Fragments Context at Scale

GitFlow'* with its multiple long-lived branches epitomizes code-centric thinking. This made sense when
engineering time was precious and changes were slower. Now, with agents generating code at high speed,
each branch multiplies contexts the AT must reconcile.

A typical scenario: a feature touches main, dev, feature-branch-1, and hotfix-branch-2.
* When you prompt an Al with “implement feature X,” is it a new branch? And which branch does it
branch from?

* A human developer intuitively knows based on the conversation, the task at hand, and tacit knowledge.

* The Al agent sees four conflicting realities with no way to reconcile them.

Deciding which branch to use, and when to merge or rollback code becomes perpetual overhead.

2.4 Trunk Based Development Wins
At SpecStory we recognize three realities:

1. Agents are excellent at implementation given solid specifications.
2. Humans remain indispensable for design, prioritization, and judgment.

3. The gap between English language specification and code is narrowing.

We've adopted trunk-based development® as a preferred development methodology. Unlike traditional trunk-
based teams, however, we rarely write code ourselves. Instead, each role contributes to a single shared
repository:

e PMs: testable user behaviors (functional intent).
* Designers: coded constraints: spacing, components, interactions (design intent).

* Architects: explicit interfaces, contracts, and dependencies (technical intent).

By versioning specs, code, and tests together, we address the chaos of large interdependent features. “Where
do I start?” becomes simpler because unfinished work cannot hide in branches. One branch enforces one
truth. Near-instant implementation from an Al eliminates the need to defer integration. Cheaper to develop
tests means broader and deeper test coverage is protecting the trunk from regressions. The requirement for
explicit specifications ensures no knowledge remains hidden in people’s heads.

Martin said, “It is the responsibility of every software professional to understand the domain of the solutions they
are programming.” Today, that responsibility intensifies. It’s not enough to know the domain. You have to

articulate it precisely so both humans and Al can evolve it. In trunk-based development, clarity is the ultimate
constraint and there’s no place to conceal ambiguity.

3 Part III - How Specflow Operationalises Trunk + Specs

After thousands of hours using agents with Cursor, Copilot, and Claude Code, we formalized Specflow'®, an
open, flexible workflow that converts intent into software through structured planning and iterative execution.
We use Specflow on top of trunk-based development.

Plan first, act second. Specflow accomplishes this in five steps:
1. Pre-plan: PMs define user outcomes; designers add patterns; engineers list constraints. A top
reasoning model (Claude 4, GPT-03) helps synthesize.

2. Roadmap: Everyone co-authors a markdown roadmap in the repo.

3. Workplans: Each roadmap phase is broken down into human and Al-executable tasks. This forces
implicit knowledge out into the open.

4. Execute: Agents tackle tasks; anyone can intervene because context lives in git.

5. Update & Refine: Docs evolve with each cycle, capturing decisions and “as-built” truth in shared project
memory.

Like Clean Code’s emergent design, Specflow relies on code and tests as specifications, but agent-first devel-
opment adds a crucial third layer: declared intent (roadmaps, workplans, docs, etc all in markdown) that
both humans and Al can interpret.

This approach let three of us deliver a complete, end-to-end macOS alpha of our Studio product in just four
weeks — an impossible timeline using traditional means.

3.1 Ad-Hoc = Adversity

Without this structure, projects spiral: vague prompts yield incorrect outputs, repeated revisions, regressions,
difficult integrations, and unmanageable technical debt. “Vibe coding” by multiple roles in multiple places
leads to fragmented results none of which align.

Diwank Singh at Julep describes this:

“Without proper guardrails, you're not coding anymore—you’re playing whack-a-mole with an
overeager intern who memorized Stack Overflow but never shipped production code.”

The core failure is context loss. Each Al prompt is relatively stateless, so a lack of shared structure means
the system doesn’t converge. And with multiple team members giving scattered instructions, fragmentation
compounds.

3.2 Current Pain Points

Specflow imposes order but it also redistributes complexity. We’ve learned that while it addresses big issues,
it demands mastery of micro-decisions that seasoned developers handle via intuition.

* The context loading problem: Before any prompt, we must decide what context to load. A senior
developer instinctively knows to mention a custom state manager but omit a trivial logging utility. Al
requires conscious decisions about every detail, to avoid either drowning it in noise or starving it of
context.

Model choice micro-decisions: We must also decide which model is best at each stage: GPT-03 for
architecture, Claude 4 for user stories, Gemini for implementation? Humans switch modes seamlessly:
with Al, you have to pick models and prompts deliberately . A developer reading “implement user au-
thentication” implicitly considers databases, APIs, forms, security, etc. With agents, each sub-decision
must be explicit. Over-specify and you do needless work; under-specify and the Al guesses incorrectly.

Precision overhead: LLMs understand “enterprise-ready” (SSO, RBAC, audit logs) better than most
developers. But they don’t know when to apply that knowledge. Humans leave scope unspoken,
assuming teammates know whether they’re building a disposable prototype or production grade
software. LLMs don’t ask and just assume, delivering battleships when you need dinghies or dinghies
when you need battleships. The cost isn’t typing out requirements. It’s the awareness of every unspoken
assumption that humans typically navigate through context clues and clarifying conversations.

Intervention and versioning trade-offs: Deciding when to interrupt agents is tricky. Humans can
sense small mistakes and pivot quickly. With agents, an early stop might waste potential progress
whereas a late stop might produce a large tangle to unravel. Progress tracking also becomes more
explicit. Developers often just “know” if a task is complete. For Al, you must define done criteria,
commit points, branching, and documentation policies. Each agent turn might warrant commentary
or a new commit. The overhead can be enormous if not carefully managed.

The maintenance burden: Microsoft Research has shown that even the most advanced models achieve
only 48.4% success on debugging tasks!”. Agents generate code without global context creating “house
of cards code” that appears complete but fails under real-world pressure.

3.3 The Insight

The future belongs to teams who can harmonize Al’s precision requirements within human cognitive limits.

Until we create better intent-centric tools that reduce these micro-decisions, spec-driven development with
agents remains powerful in theory but insufficient in practice.

Teams should spend energy shaping architecture, not typing file paths. Those who thrive distinguish between
frictional micro-decisions and high-leverage macro-decisions. Yes, the overhead today is real but so are the
gains when properly managed.

4 Part IV - Where the Human Edge (and ROI) Now Lives

In this new landscape, the leverage comes from humans doing what only humans can do. Yet the nature of
that work has changed.

* Domain modeling and architecture still need human insight, especially now that implicit knowledge
must be spelled out for Al. Humans see hidden connections and unstated needs that remain invisible
to language models. But we have to convey these insights as specifications an agent can execute.

Intent specification and refinement is now essential. Writing specs that are simultaneously precise
enough for an Al to implement, yet flexible enough to allow solutions through iterative refinement,
has become a specialized skill. This addresses the mentorship challenge: while 84% of developers
learning to code use Al tools'® Senior developers must now teach specification and architecture rather
than syntax.

Quality judgment stays human, but it now works differently. Rather than checking line-by-line
code, we judge whether the output of our intent solves genuine user problems. CSET studies'® show
48% of Al-generated code contains vulnerabilities, requiring 25-40% more review time?°. But teams
implementing proper review processes catch 75% of these issues®!.

* Context preservation and evolution matter deeply. The codebase must hold a coherent narrative arc
that both humans and Al agents can traverse. In practice, that means curating institutional knowledge
in executable form and elevating code quality standards so the code itself is optimised for Al readability:
clean structure, rich metadata, and clear intent baked in from the start

4.1 The Sacred Rule: Never Let Al Specify Your Tests

One principle stands above others in Al-assisted development, echoing Clean Code fundamentals and the
complexities of multi-voice teams. Singh emphatically states: “Never. Let. AL Write. Your. Tests.”. We think
its specification that matters. If Al specifies them then control is ceded

Tests are much more than code checking code. They are executable specs capturing shared understanding of
correct behavior.

Tests must reflect business rules, user needs, and critical insights from people who truly know the domain.
Testing is also broader than running executable coded tests. Running software generated by agents must be
evaluated by human users and is often done so continuously throughout its creation.

4.2 The New Stack: Intent + Code + Tests

The future stack we envision does not replace Clean Code principles. It evolves them for a world where
implementation is cheaper with agents but coordination increasingly expensive.

* Declared intent: This is the first-class spec, reflecting all voices: product, design, architecture.

* Code: It’s still important for clarity, maintainability and of course runtime behavior but now exists as
just one possible execution of the clearly declared intent.

» Tests: They verify both the intention and its implementation, ensuring stakeholder alignment on the
solution.

Instead of code being the primary specification as Clean Code advocated, it becomes one valid implementation
of the intent specification. The code must still be clean, readable (by humans and agents), and maintainable
but it’s no longer the only source of truth.

4.3 The Craftsperson’s Evolution

We are entering a new era of craftsmanship. Where Clean Code focused on individual and team excellence in
writing code, Al-led development emphasizes collaborative specification. Tomorrow’s craftsperson excels at:

* Architecting Al-implementable systems
* Writing specs that harmonize multiple stakeholder perspectives without diluting opinionated taste
* Maintaining consistent quality across human and Al contributions

* Orchestrating development at a higher abstraction level

Questions like “How many times did you prompt?” or “How do we keep the roadmap and final outputs
aligned?” point to the shared shift: the bottleneck is no longer in writing code but in synthesizing intent for
an Al to implement, and validating that the intent has been faithfully realized by the AL

Teams that adapt to this new reality and are able to create a “team-wide flow state” rather than forcing
everyone into ad-hoc prompting will flourish. Trunk-based development anchored by human specifications
and executed by Al agents addresses context fragmentation and ensures quick, high-fidelity feedback. It
forces alignment across multiple voices before and after code is generated.

Industry economics support this transition: IBM’s 2024 study®? found 47% of companies already seeing
positive ROI from Al investments.

We do not foresee a no-code or low-code future. Rather, we see high-leverage code, where human intelligence
from multiple domains directs Al to build things neither could achieve alone. The specification is still code,
just a different kind: written by teams for a new interpreter that can be made to understand collective intent,
bridging the gap between human creativity and machine efficiency.

Robert Martin was right: there will always be code. In fact, the specification itself is code. In the Al era,
the spec must capture not just one visionary’s plan but the combined intent of everyone necessary to deliver
genuine value.

Teams that master the art of iterative specification to orchestrate agents will own the future.

5 Acknowledgments

The author thanks Dr. Cat Hicks, Jake Levirne, Sean Johnson and Akshay Bhushan for their thoughtful review
and feedback on this white paper. And to Zee Waheed for catching a citation error.

6 Endnotes

Hou, W, & Ji, Z. (2024). A systematic evaluation of large language models for generating programming code (Version 1)
[Preprint, arXiv]. arXiv. https://arxiv.org/abs/2403.00894

2Martin, R. C. (2008). Clean code: A handbook of agile software craftsmanship. Pearson.

3Bhushan, A., Ceccarelli, G., & Levirne, J. (2024, November 13). The rise of the software composer: A new era of software creation.
Tola Capital. https://tolacapital.com/2024/11/13/the-rise-of-the-software-composer-a-new-era-of-software- creation

4Hammond, G. (2025, May 5). Maker of Al “vibe coding” app Cursor hits $9 billion valuation. Financial Times. https://www.ft.com/
content/a7b34d53-a844-4e69-a55c-b9dee9a97dd2

SVasudevan, V. (2025, April 29). Github Copilot adoption trends: Insights from real data. Opsera Blog. https://www.opsera.io/blog/
github-copilot-adoption-trends-insights-from-real-data

6DeBellis, D., Storer, K. M., Villalba, D., Irvine, M., & Castillo, K. (2024). 2024 Accelerate State of DevOps Report (Version 2024.2).
Google Cloud. https://dora.dev/research/2024/

7Stack Overflow, 2024 Developer Survey, section “Al in the development workflow,” chart “Which parts of your development workflow
...,” accessed June 8 2025, https://survey.stackoverflow.co/2024/ai (showing that 82 percent of developers who already use Al tools
rely on them specifically to write code); Wenpin Hou and Zhicheng Ji, “A Systematic Evaluation of Large Language Models for Gener-
ating Programming Code,” arXiv preprint arXiv:2403.00894 v1 (cs.SE), March 1 2024, Figure 2, https://arxiv.org/abs/2403.00894v1
(reporting that GPT-4’s five-attempt success rate jumps from 15 percent under a basic “repeated prompt” strategy to 86 percent
under an optimized “feedback CI” strategy, underscoring how strongly outcomes hinge on prompt design).

8Code Coup. (2025, May 6). How I built 18 MVPs in 6 months using Cursor Al [Blog post]. Coding Nexus. https://medium.com/
coding-nexus/how-i-built-18-mvps-in-6-months-using-cursor-ai-d3021252824a

“Tomer, D. S. (2025, June 7). Field notes from shipping real code with Claude. diwank’s space. https://diwank.space/field-notes-
from-shipping-real-code-with-claude

10yijy, E., Kosoy, E., & Gopnik, A. (2023). Transmission versus truth, imitation versus innovation: What children can do that large
language and language[Jand[Jvision models cannot (yet). Perspectives on Psychological Science, 19(5), 874-883. https://doi.org/10.
1177/17456916231201401

14, Y, Sachan, D. S., Li, Z., & Zettlemoyer, L. (2023). Lost in the middle: How language models use long contexts (arXiv:2307.03172).
arXiv. https://arxiv.org/abs/2307.03172 — “We find that performance can degrade significantly when changing the position of relevant
information, indicating that current language models do not robustly make use of information in long input contexts. In particular,
performance is often highest when relevant information occurs at the beginning or end of the input context, and significantly degrades
when models must access relevant information in the middle of long contexts.”

https://arxiv.org/abs/2403.00894
https://tolacapital.com/2024/11/13/the-rise-of-the-software-composer-a-new-era-of-software-creation
https://www.ft.com/content/a7b34d53-a844-4e69-a55c-b9dee9a97dd2
https://www.ft.com/content/a7b34d53-a844-4e69-a55c-b9dee9a97dd2
https://www.opsera.io/blog/github-copilot-adoption-trends-insights-from-real-data
https://www.opsera.io/blog/github-copilot-adoption-trends-insights-from-real-data
https://dora.dev/research/2024/
https://survey.stackoverflow.co/2024/ai
https://medium.com/coding-nexus/how-i-built-18-mvps-in-6-months-using-cursor-ai-d3021252824a
https://medium.com/coding-nexus/how-i-built-18-mvps-in-6-months-using-cursor-ai-d3021252824a
https://diwank.space/field-notes-from-shipping-real-code-with-claude
https://diwank.space/field-notes-from-shipping-real-code-with-claude
https://doi.org/10.1177/17456916231201401
https://doi.org/10.1177/17456916231201401
https://arxiv.org/abs/2307

12Jin, H., Huang, L., Cai, H., Yan, J., & Chen, H. (2024). From LLMs to LLM-based agents for software engineering: A survey of current,
challenges and future (arXiv:2408.02479). arXiv. https://arxiv.org/abs/2408.02479 — “It is still in its early stage for a unified
standard and benchmarking to qualify an LLM solution as an LLM-based agent in its domain,

3purtell, J. (2025, March 18). Specification engineering. Prolegomena. https://www.joshuapurtell.com/posts/spec_eng/
Driessen, V. (2010, January 5). A successful Git branching model. nvie. https://nvie.com/posts/a-successful-git-branching-model

SHammant, P (n.d.). Trunk based development: Introduction. TrunkBasedDevelopment.com. Retrieved June 8, 2025, from https:
//trunkbaseddevelopment.com/

16gpecStory. (n.d.). Specflow: Structure for building with Al agents. Retrieved June 8, 2025, from https://www.specflow.com

17Lardinois, F. (2025, April 10). Al models still struggle to debug software, Microsoft study shows. TechCrunch. https://techcrunch.com/
2025/04/10/ai-models-still-struggle-to-debug-software-microsoft-study-shows/

18Stack Overflow. (2024). 2024 Stack Overflow developer survey: AL https://survey.stackoverflow.co/2024/ai

9Center for Security and Emerging Technology. (2024). Cybersecurity risks of Al-generated code. Georgetown University. https:
//cset.georgetown.edu/publication/cybersecurity-risks-of-ai-generated-code/

20DevOps.com. (2024). Al in software development: Productivity at the cost of code quality? https://devops.com/ai-in-software-
development-productivity-at-the-cost-of-code-quality/

2Ipark Reading. (2025). Will Al code generators overcome insecurities in 2025? https://www.darkreading.com/application-security/
will-ai-code-generators-overcome-their-insecurities- 2025

22IBM. (2024, December 19). IBM study: More companies turning to open-source Al tools to unlock ROI [Press release].

https://arxiv.org/abs/2408.02479
https://www.joshuapurtell.com/posts/spec_eng/
https://nvie.com/posts/a-successful-git-branching-model
https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/
https://www.specflow.com
https://techcrunch.com/2025/04/10/ai-models-still-struggle-to-debug-software-microsoft-study-shows/
https://techcrunch.com/2025/04/10/ai-models-still-struggle-to-debug-software-microsoft-study-shows/
https://survey.stackoverflow.co/2024/ai
https://cset.georgetown.edu/publication/cybersecurity-risks-of-ai-generated-code/
https://cset.georgetown.edu/publication/cybersecurity-risks-of-ai-generated-code/
https://devops.com/ai-in-software-development-productivity-at-the-cost-of-code-quality/
https://devops.com/ai-in-software-development-productivity-at-the-cost-of-code-quality/
https://www.darkreading.com/application-security/will-ai-code-generators-overcome-their-insecurities-2025
https://www.darkreading.com/application-security/will-ai-code-generators-overcome-their-insecurities-2025

	Part I – When Bottlenecks Shift
	The Past Two Years
	Why Today's Paradigms Break with Agents

	Part II – Upgrading our approach for the Agent Era
	Waterfall's Rigidity
	The Agile Paradox
	GitFlow Fragments Context at Scale
	Trunk Based Development Wins

	Part III – How Specflow Operationalises Trunk + Specs
	Ad-Hoc = Adversity
	Current Pain Points
	The Insight

	Part IV – Where the Human Edge (and ROI) Now Lives
	The Sacred Rule: Never Let AI Specify Your Tests
	The New Stack: Intent + Code + Tests
	The Craftsperson's Evolution

	Acknowledgments
	Endnotes

